ar X iv : 0 70 6 . 42 99 v 2 [ m at h . D G ] 5 M ay 2 00 8 A METRIC ON SHAPE SPACE WITH EXPLICIT GEODESICS

نویسندگان

  • PETER W. MICHOR
  • JAYANT SHAH
  • DAVID MUMFORD
چکیده

This paper studies a specific metric on plane curves that has the property of being isometric to classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo rotation etc. . . ) Using these isometries, we are able to explicitely describe the geodesics, first in the parametric case, then by modding out the paremetrization and considering horizontal vectors. We also compute the sectional curvature for these spaces, and show, in particular, that the space of closed curves modulo rotation and change of parameter has positive curvature. Experimental results that explicitly compute minimizing geodesics between two closed curves are finally provided

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 5 . 10 42 v 1 [ m at h . M G ] 8 M ay 2 00 7 NON - POSITIVE CURVATURE AND THE PTOLEMY INEQUALITY

We provide examples of non-locally compact geodesic Ptolemy metric spaces which are not uniquely geodesic. On the other hand, we show that locally compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is CAT(0) if and only if it is Busemann convex and Ptolemy.

متن کامل

ar X iv : 0 70 6 . 42 99 v 1 [ m at h . D G ] 2 8 Ju n 20 07 A METRIC ON SHAPE SPACE WITH EXPLICIT GEODESICS

This paper studies a specific metric on plane curves that has the property of being isometric to classical manifold (sphere, complex projective, Stiefel, Grassmann) modulo change of parametrization, each of these classical manifolds being associated to specific qualifications of the space of curves (closed-open, modulo rotation etc. . . ) Using these isometries, we are able to explicitely descr...

متن کامل

ar X iv : 0 80 5 . 10 03 v 1 [ m at h . SP ] 7 M ay 2 00 8 GEODESICS ON WEIGHTED PROJECTIVE SPACES

We study the inverse spectral problem for weighted projective spaces using wave-trace methods. We show that in many cases one can “hear” the weights of a weighted projective space.

متن کامل

ar X iv : 0 70 5 . 38 12 v 1 [ m at h . D S ] 2 5 M ay 2 00 7 DYNAMICS OF THE TEICHMÜLLER FLOW ON COMPACT INVARIANT SETS

Let Q(S) be the moduli space of area one holomorphic quadratic differentials for an oriented surface S of genus g ≥ 0 with m ≥ 0 punctures and 3g − 3 + m ≥ 2. We show that for every compact subset K of Q(S) the as-ymptotic growth rate δ(K) of the number of periodic orbits of the Teichmüller flow Φ t which are contained in K is not bigger than h = 6g − 6 + 2m, and sup K δ(K) = h. Similarly, h is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008